An overview of radio site measurements

Tom Brinkoetter RadioSiteTest.com

Background (CV)

- 40 year of RF Test and Measurement Applications engineering
 - Anritsu S412E LMR Master
 - Anritsu Spectrum and Network Analyzers
 - HP Spectrum and Network Analyzers
 - Tektronix Spectrum
 Analyzers, Oscilloscopes

- Certifications
 - FAA sUAS Pilot License, October 2016
 - Drone Cell Tower Inspection Training, December 2016
 - Certified Climber /Rescuer, January 2017
 - Anritsu PIM Master
 Certification 2015
 - Network Associates Sniffer
 Certified Professional 2000

Presentations and Papers

- Presentations:
 - Using Drones for Site Surveys, IWCE, March 2017
 - Testing Indoor Coverage, IWCE, March 2017
 - Measurement and Optimization of Talk-in Coverage for VHF and UHF TDMA Radio Systems, IWCE, March 2017
 - In-Building Distributed Antenna Systems (DAS)
 Planning for Public Safety, IWCE March 2016
 - Public Safety Distributed Antenna System (DAS) Measurements, Web seminar August 2015
 - Receiver Blocking Measurements, APCO WRC May 2015
 - Optimizing Simulcast Systems, IWCE March 2015
 - Using SINAD Coverage Mapping to Locate Receiver Blocking, APCO WRC 2015
 - Using a VNA to Tune N-Way Combiners, IWCE March 2014
 - P25 Receiver Testing, IWCE 2013
 - Fundamentals of Interference Analysis IWCE 2011
 - Session Chairman for Wireless Data Technical Session at the Wireless Design Trade Show from 1992 to 1999

- Application Notes / White Papers:
 - Solving mm-Wave Test Challenges, Microwave Journal March 2017
 - In-Building Propagation Measurements for 5G Communications August 2016
 - In-Building Mapping March 2016
 - Accuracy of DTF Measurements of New Spools of Transmission Line, December 2015
 - Measuring Antenna Pattern with the Anritsu S412E, November 2015
 - High Q Notch Filter Measurements; August 2015
 - Measuring Delay Through a Repeater or DAS, August 2015
 - Receiver Testing January, 2012
 - Mapping BER of P25 Radio Systems, May, 2015
 - Indoor Mapping, August 2010

Agenda

- Network Analyzers
 - Cable and antenna testing
 - Filter tuning
 - Distance to fault
- Spectrum Analyzers
 - Emission mask testing
 - Interference
 - Passive Intermodulation
 - Broadcast to LTE
- Using a drone with camera and spectrum analyzer to characterize tower sites

Antenna Test

- Spectrum analyzer with TG
- Service Monitor
 IFR, Motorola
- Calibration is Short

FEATURES:

· Coverage: 5 Mhz to 3000 MHz

Five Watt Power Rating
 Covers all Cell and PCS bands
 Directivity >40 dB
 RF reflected port
 Internal 50 ohm Reference
 Rugged case and connectors

Great for Antenna Work

Cable Test Basics

- Perfect situation
 - Source 50 ohms, cable 50 ohms, antenna 50 ohms, Perfect
 bridge or coupler
 - Calibrate > Reference Line

Cable and Antenna Calibration

Short calibration sets reference line 100 % reflection

Why use a Short and an Open?

Frequency

- Average between open and short removes ripple due to mismatch between the DUT and the signal generator
- Open- Short calibration removes frequency response of bridge, test port cable, adapters, etc

Termination Calibration

- Couplers and bridges are not perfect
- A termination calibration removes error from a bridge or coupler

RF Immunity

• Testing an antenna where other transmitters are on

Vector Network analyzer

• A VNA has a separate reference receiver and coupler to measure phase (and improve accuracy)

S412E Field Mode vs. VNA Mode "Terminology"

- Field Mode
 - VSWR
 - Return loss (dB)
 - Insertion loss (dB)
- Graph Type Selector

 VSWR
 Image: Select Of Se

- VNA Mode
 - S11 Log Mag
 - S21 Log Mag

Graph Type Selector	-
Log Mag	
SWR	
Phase	
Real	
Imaginary	
Group Delay	
Smith Chart	
Log Mag/2 (1-Port Cable Loss)	
Linear Polar	
Log Polar	
Real Impedance	
Imaginary Impedance	
Invested Smith Chart	

Testing an Antenna (Match RL or SWR)

- Away from metal (unless final mount on tower)
- Return Loss vs. Frequency (0.1 to 1 GHz)
- 0 dB RL = full reflection
- 20 dB RL = 99/100 watts radiated.

Testing an Antenna and Feed line

- 600 ft. LDF-2 Feed line and Yagi Antenna
 - Immunity to other RF

/inritsu 11/	29/2015 07	:46:48 pm							Scale	
	IFBW: 1 kHz		AVG:	Befere	Power: De nce Plane P1: J	fault Top				
TR1: Return Loss Smooth: 1 % CAL: ON (OK)	10.0	Top 10.00 d	В					1	0.00 dB	
	0.0							1	Bottom	
Ref 10.00 dB	<u>≈40.0</u>					÷		- 9	30.00 dB	
	-20.0		~							
	- 30.0		MK1	- market	m	m	hours	M		
	-40.0									
	-50.0									
	-60.0				8					
	-70.0									
	- 80.0				5					
	100.000 M	1Hz		TR1			1.000	GHz		
	MK# MK1 MK2	Freq 430.750 MHz OFF	TR1 -40.93	dB		M1 N/A				
	MK3 MK4 MK5 MK6	OFF OFF OFF						A	utoscale	
	MK7 MK8	OFF								
Freq/Dist		Scale		Sweep		Me	asure	Marker		

Feed line Loss = RL/2

• 600 ft. LDF -2

/Inritsu 11/	29/2015 07	:57:03 pm					File
	Points: 801 Bias Tee C) Dff	IFBW: 1 kHz	AVG:	P Reference Pla	ower: Default ane P1: 0 mm	Save Measurement As
TR1: Return Loss Smooth: 1 % CAL: ON (OK)	10.0						FileName.mna
	0.0						Save
Ref 10.00 dB/	-10.0		МК1				Measurement
	-20.0						Save
	-30.0						7.90.9
	-40.0						
	-50.0						Desell
	-60.0						Measurement
	- 70.0						
	-80.0						Recall
	100.000 M MK# MK1 MK2	Hz Freq 430.750 MHz OFF	TR1 -25.29 dB	31	M1 N/A	1.000 GHz	Сору
	MK3 MK4 MK5 MK6 MK7	OFF OFF OFF OFF					Delete
MK8 Freq/Dist		Scale		Sweep	Measure		Marker

Return Loss vs. Distance to Fault

Telewave ANT450D3-3T

Distance to Fault

Distance to Fault Accuracy

Distance to Fault

• Distance – Vp (Propagation Velocity) Setting

Q

An incorrect Vp setting causes incorrect distance reading

Testing New Spools of Feedline at Tower Sites

- 50 Ohms +- 1 Ohm = 40 dB Return Loss
- With care, DTF measurements can support 40 dB RL within +- 1 dB
 - Locate damage from shipping / installation

Smith Chart and "S-Parameters"

- 4 Receivers (full 2 Port VNA)
 - a1, a2 forward
 - b1, b2 reverse (reflected)
- S412E has one path 2 port VNA
 - 3 Receivers
 - No reference receiver on port 2 (b2)
- Smith chart
 - Complex impedance
 - R+jX
 - Mag angle (deg)
- Easy to cut 1/4 or 1/2 wavelength cables

2 – Port VNA Measurements (cable loss / filter tuning)

Source flatness (and match) corrected

2 – Port VNA Measurements (cable loss / filter tuning)

2 – Port VNA Measurements (cable loss / filter tuning)

Spectrum Analyzer

What we are going to cover:

- Basic Operation
- SuperHeterodyne Principle
- Some characteristics of a Spectrum Analyzer
 - Frequency Range
 - Frequency Resolution
 - Sensitivity and Noise Figure
 - Signal Display Range
 - Dynamic Range
 - Resolution Bandwidth (RBW)
 - Video Bandwidth (VBW)

Superheterodyne Principle

Simplified Block Diagram:

Spectrum Analyzer Fundamentals

Spectrum Analyzer Settings:

Frequency Range may be set two ways

Spectrum Analysis Function Bandwidth

Bandwidth Menu

- Allows RBW and VBW to be set manually
- Defines the formula to be used when set automatically

Bandwidth Menu

- **RBW** manually sets the bandwidth of the IF filter
- Auto RBW sets RBW according to the formula below when On
- VBW manually sets the bandwidth of the Video Filter
- Auto RBW sets VBW according to the formula below when On
- **RBW/VBW** is the formula for the setting of VBW (it follows RBW)
 - **Span/RBW** is the formula for Auto RBW when Auto RBW is on

- Selecting Amplitude Range
 - Reference Level
 - Minimum -130 dBm
 - Maximum +30.0 dBm
 - Scale
 - Minimum 1 dB/Div
 - Maximum 15 dB/Div
 - Attenuation/Preamp
 - Auto
 - Manual
 - Preamp On/Off

Amplitude Menu

- **Reference Level** is the setting of the top line of the display
- Scale changes the units per division of amplitude
- Auto Atten changes attenuation as Reference Level changes
- Atten LvI is the setting of the input attenuator (0 to 65 dB)
- RL Offset compensates for external attenuators
- **Units** changes from dBm to dBV to Watts to Volts
- **Pre-Amp On** improves noise level and sensitivity
- Detection sets type of detector

Amplitude Units

- Log
 - dBm
 - dBv
 - dBmv
 - dBuv
- Linear
 - Volts
 - Watts

Note:

 Scale (dB per division) only functions in log units

Spectrum Analysis Display Range

Typical Signal Display Range

Spectrum Analysis Spurious

Is this a real signal or is it a spurious caused by mixer overload?

Spurious Test:

- Note the level of the suspected spurious signal
- Increase Spectrum Analyzer Input Attenuation by 5 dB
- Check the level of the suspected spurious signal again
- It should change 5 dB. If it changes 15 dB or more, it's a spurious signal

Spectrum Analysis Basic Theory of Operation

Spectrum Analyzer Characteristics

- Wide frequency range.
- Amplitude and frequency calibration via internal calibration source and error correction routines.
- Flat frequency response where amplitude is independent of frequency.
- Good frequency stability using synthesized local oscillators and reference source.
- Low internal distortion.
- Good frequency resolution.
- High amplitude sensitivity.
- Linear and logarithmic display modes for amplitude (voltage and dB scaling).
- Absolute and relative measurement capabilities.

Spectrum Analyzer Basic Theory of Operation

Sensitivity and Noise Figure

Effects of RBW on Noise Floor

Maximizing Sensitivity:

- A signal must be stronger than noise to be measurable
- Noise decreases as RBW becomes narrower
- Noise decreases as instrument noise figure improves
- To maximize sensitivity, turn on the pre-amplifier, turn off all attenuation and reduce RBW setting as much as feasible

Amplitude Detection

- The Spectrum Analyzer takes several amplitude measurements per display pixel
- The Detection menu selects the method to display the measurement

Detection Menu

- **Peak** displays the strongest of all the measurements (Default)
- **RMS** displays a root-mean-square calculation of all the measurements
- **Negative** displays the weakest of all the measurements
- **Sample** displays the middle measurement, whatever it is
- Quasi-peak measures the amplitude as specified by CISPR

Phase Noise

- Need low Phase Noise analyzer to make broadcast emission mask measurements
- -110 dBc/Hz @ 1 kHz offset at 1 GHz

Spectrum Analyzer

Field Measurements:

- Spectrum analyzers default to power into 50 ohm input.
- Field Strength
 - Antenna and analyzer combined
 - Need "Antenna Factor"
 - The magnitude of an electric, magnetic, or electromagnetic field at a given location
 - The strength is measured in Amplitude Units/"length" which is in meters
 - The field strength can be measured in dBm/m², dBV/m, dBmV/m or dB μ V/m
 - A linear unit such as mV/m or nW/m² can also be used

Spectrum Analyzer

- Steps to set up a Field Strength Measurement
 - Connect an antenna to the RF in port
 - Press Menu, then Spectrum Analyzer (if not already set)
 - Press Freq then enter frequency and span
 - Press Shift, Measure (4), then Field Strength Soft Key
 - Press Antenna and select a standard or custom Antenna
 - Press **On** soft key to begin the measurement
 - Press Amplitude, then Units and select the measurement units
 - Press **Back** and change the **Reference Level**, as needed
 - Press Shift, Measure (4), Field Strength, then Off soft key to stop the measurement

Emission Mask Measurements

NATIONAL RADIO SYSTEMS COMMITTEE

NRSC-G201-B NRSC-5 RF Mask Compliance: Measurement Methods and Practice April 2016

Consumer Technology Association

NAB: 1771 N Street, N.W. Washington, DC 20036 Tel: 202-429-5356 Fax: 202-517-1617 1919 South Eads Street Arlington, VA 22202 Tel: 703-907-4366 Fax: 703-907-4158

Co-sponsored by the Consumer Technology Association and the National Association of Broadcasters http://www.nrscstandards.org

Emission Masks

- Consequently, over-the-air measurements are not recommended for assessing hybrid IBOC FM signals for RF mask compliance.
- Establish the "analog reference level"
- Resolution Bandwidth 1.0 kHz Video Bandwidth to 10 kHz or higher. Then restart the averaging to clear the memory of old display data. After 100 sweeps,

Anritsu Broadcast Emission Masks

- Free
- Easy to build/ adjust

- AM_ANALOG_21B11
- AM_ANALOG_MASK_1-KW_21B(1)11
- AM_ANALOG_MASK_158_WATTS11
- AM_iBiquity_IBOC_MASK(1)11
- AM_NRSC_73.44_5KW11
- DTV_MASK_21B11
- FM_ANALOG_MASK_21B11
- AM_ANALOG_21B
- AM_ANALOG_MASK_1-KW
- AM_ANALOG_MASK_1-KW_21B(1)
- AM_ANALOG_MASK_158_WATTS
- AM_iBiquity_IBOC_MASK
- AM_NRSC_73.44_5KW
- DTV_MASK_21B
- FM_ANALOG_21B(1)
- FM_ANALOG_21B(2)
- FM_ANALOG_MASK_21B
- FM_ANALOG_MASK1

Interference Measurements,

- Setting up the Spectrum Analyzer
 - CW interference
 - Reducing RBW improves viewing
 - Noise interference
 - Noise floor setting critical
 - Antenna gain critical

Interference Measurements,

- Setting up the Spectrum Analyzer
 - Noise floor vs RBW
 - Noise Floor vs attenuation
 - Verify noise floor, remove antenna
 - 551 horizontal points vs. RBW / SPAN

Interference Measurements

- Typically Interference is < -90 dBm
 - Front end Overload
 - Must Filter off Broadcast

Filters for finding sensitive interference with broadcast signals on test antenna

Filters for finding sensitive interference with broadcast signals on test antenna

Interference Measurements, Spectrum Analyzer Mode

- Max-Hold Good Signals
- Envelope Limit Line

Interference Measurements, Spectrum Analyzer Mode

Folder of Captured Spectrums

/Inritsu 03/11/2016 07	:35:16 pm			Сору			
Сору				Sort By			
Filetype: ALL			•	Name Type <u>Date</u>			
				Sort Order			
Select Files or Directory to	Сору			Ascend <u>Descend</u>			
🗆 🦰 Internal Memory				File Type			
				ALL			
Anritsu_Snapsh	iot		03/11/2016 07:33:50 n m	Refresh			
- 03112016193344.jp	- 03/17/2016 07:33:50 p.m. - 03/11/2016 07:33:40 jpg 03/11/2016 07:33:44 p.m.						
			00/11/2010 07 20 20 * **	Scroll			
Select Destination:				<u>Src</u> Dst			
E Sinternal Memory				Select			
- ⊕ 🗂 03111934_1				Or Do Salact			
Anritsu_Snapsh	ot			De-Select			
🗉 🂉 USB 1				Сору			
				-			
Freq	Amplitude	Span	BW	Marker			
0	CitoTo	-					

Interference Measurements, Spectrum Analyzer Mode

- Spectrogram from "Exceed Limit
- 3D View
- AVI
- Ma

		$\sim \sim$			3 🖬 🖏 F	7 🚭 🐺 SERIAL 🔹 💽 🔗 🌡	k 🚈 🎝 🤣									
			Local Devic	ce Open Network						Trace Catalog	- Spectrum Analyzer					
					\Program Files ((86)\Anntsu\Master Software Tools		• * 🛪 🖽 •	IF SPA • ₫							
						Archives	& Mouse Function	n 🔸 📰 Autoscale	Undo Zoom	📴 Overlays 🗹 Edi	Graph 🗰 Marken					
r	ker	Re	ado	out	All Name EOS201311 EOS201311 PREVIEW vna artenna bt	Site Description 31 K MS FA 10 K MS FA	-75.5 -78.8 -82.1 -45.3 -48.6 -31.9 -95.2 -38.4 -101.7									
	Freq(MHz) #84.945	Level(dBa) -121.60	Deita(MHz)	Delta(dB)			-105.0 -108.2 -111.5 -114.8 -118.0									
							-121.3				14 p					
							-124.6		and the		Sec. 1		Andrew of 1	211×15-5		
							D: LIM2016031	1193408.spa (3/11)	2016 7:34:08 PM)					_	 	
							-89									
LEV	-75,54 EL (dBm) -124				14	\$19.0cr	.evel . <u>93</u>									
				[H ₇)		019.964										

Radio

Intermodulation Interference

- "Good Sites"
 - Overlooking city
 - Easy to get to
 - Fences

Environmental "Diodes"

- 3rd order
 - 2f2-f1, 2f1 —f2
- 5TH order
 - 3f2-2f1, 3f1-2f2
- Harmonics
 - 88.9 x 8 = 711.2 MHz

http://www.commscope.com/calculators /qimdcalculator.aspx

Intermodulation Interference

- PIM Tester
- IP3 -150 dBc
 - Antennas
 - Cables
 - Connectors
- Environmental PIM

Basic block diagram of a PIM tester

Environmental PIM

- PIM Tester
 - Pulses 5%
 - LTE downlink

 UHF Antenna 3 ft from Barbed wire fence

FM Broadcast to LTE

- Harmonics
 - 88.9 x 8 = 711.2 MHz

 Detailed visual Inspections

 Detailed visual Inspections

• Antenna Downtilt

- Broadcast Antenna Pattern
 - Sixarms.com

Summary

- Very fast review of many topics
 - Network Analysis
 - Cable and antenna
 - Spectrum analysis
 - Interference
 - PIM
 - Drone measurements
- Welcome to call me with questions (and site work)
 - Cell (408) 592-3759

